Algebraic complexity of computing polynomial zeros

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zeros of an algebraic polynomial with nonequal means random coefficients

This paper provides an asymptotic estimate for the expected number of real zeros of a random algebraic polynomial a0 +a1x+a2x2 +···+an−1xn−1. The coefficients aj (j = 0,1,2, . . . ,n−1) are assumed to be independent normal random variables with nonidentical means. Previous results aremainly for identically distributed coefficients. Our result remains valid when the means of the coefficients are...

متن کامل

Sequential and Parallel Complexity of Approximate Evaluation of Polynomial Zeros

Almtract---Our new sequential and parallel algorithms establish new record upper bounds on both arithmetic and Boolean complexity of approximating to complex polynomial zeros. O(n 2 log b log n) arithmetic operations or O(n log n log (bn)) parallel steps and n log b/log (bn) processors suffice in order to approximate with absolute errors ~< 2 m-b to all the complex zeros of an nth degree polyno...

متن کامل

Algebraic adjoint of the polynomials-polynomial matrix multiplication

This paper deals with a result concerning the algebraic dual of the linear mapping defined by the multiplication of polynomial vectors by a given polynomial matrix over a commutative field

متن کامل

Inequalities for Polynomial Zeros

This survey paper is devoted to inequalities for zeros of algebraic polynomials. We consider the various bounds for the moduli of the zeros, some related inequalities, as well as the location of the zeros of a polynomial, with a special emphasis on the zeros in a strip in the complex plane.

متن کامل

Computing Minimal Polynomial of Matrices over Algebraic Extension Fields

In this paper, we present a new and efficient algorithm for computing minimal polynomial of matrices over algebraic extension fields using the Gröbner bases technique. We have implemented our algorithm in Maple and we evaluate its performance and compare it to the performance of the function MinimalPolynomial of Maple 15 and also of the Bia las algorithm as a new algorithm to compute minimal po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computers & Mathematics with Applications

سال: 1987

ISSN: 0898-1221

DOI: 10.1016/0898-1221(87)90137-4